📊 Introduction to HBase
📊 HBase 简介
What is HBase?
什么是 HBase?
HBase is an ==open-source==, ==non-relational==, and ==distributed database== from the ==Apache stack== modeled after ==Google’s Bigtable==. It is a ==column-oriented database management system== that runs on top of the ==Hadoop Distributed File System (HDFS)==, providing a ==fault-tolerant== way of storing large quantities of ==sparse data==. HBase is especially designed for ==real-time Big Data applications==.
HBase 是一个==开源==、==非关系型==、==分布式数据库==,源于 ==Apache 技术栈==,模仿了 ==Google 的 Bigtable==。它是一个==列式数据库管理系统==,运行在 ==Hadoop 分布式文件系统(HDFS)==之上,为存储大量==稀疏数据==提供了一种==容错==的方式。HBase 专为==实时大数据应用==而设计。
Overview of HBase
HBase 概述
- Purpose: HBase is used to handle ==large data sets== and is suitable for applications requiring ==real-time access== to data.
- 用途:HBase 用于处理==大型数据集==,适用于需要==实时访问==数据的应用。
- Functionality: It allows for ==random read/write access== to data stored in HDFS and is capable of managing massive amounts of data, ranging from ==terabytes (TB)== to ==petabytes (PB)==.
- 功能:它允许对存储在 HDFS 中的数据进行==随机读/写访问==,并且能够管理从==太字节(TB)==到==拍字节(PB)==的海量数据。
Relationship between HBase and Hadoop
HBase 与 Hadoop 的关系
HBase operates on top of HDFS, enhancing Hadoop’s capabilities by providing:
HBase 在 HDFS 之上运行,通过提供以下功能来增强 Hadoop 的能力:
- In-memory processing: This feature allows HBase to significantly increase the speed of read/write operations compared to HDFS, which relies on MapReduce for processing.
- 内存处理:与依赖 MapReduce 进行处理的 HDFS 相比,此功能使 HBase 能够显著提高读/写操作的速度。
- Dynamic changes: Unlike HDFS, which has a rigid architecture, HBase allows for dynamic changes and is suitable for real-time processing.
- 动态更改:与具有刚性架构的 HDFS 不同,HBase 允许动态更改,适用于实时处理。
| Feature | HDFS | HBase |
|---|---|---|
| 特性 | HDFS | HBase |
| Type | Java-based file system | Java-based NoSQL database |
| 类型 | 基于 Java 的文件系统 | 基于 Java 的 NoSQL 数据库 |
| Architecture | Rigid, does not allow changes | Dynamic, allows for changes |
| 架构 | 刚性,不允许更改 | 动态,允许更改 |
| Use Case | Write-once, read-many | Random write and read |
| 用例 | 一次写入,多次读取 | 随机写入和读取 |
| Processing Type | Offline batch processing | Real-time processing |
| 处理类型 | 离线批处理 | 实时处理 |
| Access Latency | High latency for access operations | Low latency access to small amounts of data |
| 访问延迟 | 访问操作延迟高 | 低延迟访问少量数据 |
HBase Use Cases
HBase 用例
HBase is particularly useful in various applications, including:
HBase 在各种应用中特别有用,包括:
- Telecom Industry:
- 电信行业:
- Problem: Storing billions of Call Detail Records (CDR) and providing real-time access.
- 问题:存储数十亿的呼叫详细记录(CDR)并提供实时访问。
- Solution: HBase is used to manage large volumes of data efficiently while allowing fast querying.
- 解决方案:HBase 用于高效管理大量数据,同时允许快速查询。
- Banking Industry:
- 银行业:
- Problem: Handling millions of records daily and needing analytics for fraud detection.
- 问题:每天处理数百万条记录,并需要进行分析以进行欺诈检测。
- Solution: HBase allows for quick processing and analytics of vast datasets.
- 解决方案:HBase 允许对海量数据集进行快速处理和分析。
- Tracking Applications:
- 追踪应用:
- Applications that require frequent updates and manage real-time data.
- 需要频繁更新和管理实时数据的应用。
- Search Engine Applications:
- 搜索引擎应用:
- HBase provides the necessary storage and row-level access for managing document libraries, using indexing techniques to enhance search capabilities.
- HBase 为管理文档库提供必要的存储和行级访问,使用索引技术来增强搜索功能。
HBase Application Scenarios
HBase 应用场景
- Search Engine Indexing:
- 搜索引擎索引:
- Crawlers store new pages in HBase, and a MapReduce job generates indexes for efficient search operations.
- 爬虫将新页面存储在 HBase 中,然后 MapReduce 作业生成索引以实现高效的搜索操作。
Steps for HBase to Index the Internet:
HBase 索引互联网的步骤:
- Crawler grabs new pages and stores them line by line in HBase.
- 爬虫抓取新页面并将其逐行存储在 HBase 中。
- A MapReduce job generates indexes for the web search applications.
- MapReduce 作业为 Web 搜索应用生成索引。
- Users initiate network search requests.
- 用户发起网络搜索请求。
- Web search applications query indexed documents or retrieve them directly from HBase.
- Web 搜索应用查询索引文档或直接从 HBase 中检索它们。
- Search results are submitted to users.
- 搜索结果提交给用户。
Storage Mechanism in HBase
HBase 中的存储机制
HBase consists of tables with billions of rows and millions of columns, making it suitable for applications that require ==high-speed access== to structured, semi-structured, and unstructured data. It leverages HDFS for storage while providing enhanced capabilities for real-time data processing.
HBase 由包含数十亿行和数百万列的表组成,使其适用于需要对结构化、半结构化和非结构化数据进行==高速访问==的应用。它利用 HDFS 进行存储,同时为实时数据处理提供增强的功能。
🖥️ Monitoring Systems and Data Management
🖥️ 监控系统和数据管理
Importance of Monitoring
监控的重要性
- Monitoring Health: Essential to maintain the normal operation of products by monitoring servers and software (from OS to user-interactive applications).
- 健康监控:通过监控服务器和软件(从操作系统到用户交互应用),对于维持产品的正常运行至关重要。
- Large-Scale Monitoring: Requires a capable monitoring system to collect and store various parameters from different data sources.
- 大规模监控:需要一个强大的监控系统来从不同的数据源收集和存储各种参数。
OpenTSDB: Open Time Series Database
OpenTSDB:开源时序数据库
- Developed by StumbleUpon to collect various monitoring parameters into a single server.
- 由 StumbleUpon 开发,用于将各种监控参数收集到单个服务器中。
- Time-Series Data: Data collected and recorded over time.
- 时序数据:随时间收集和记录的数据。
- Core Platform: Uses HBase to store and retrieve collected parameters.
- 核心平台:使用 HBase 来存储和检索收集的参数。
- Purpose:
- 目的:
- Extensible metrics collection system.
- 可扩展的指标收集系统。
- Stores metrics for long-term access.
- 存储指标以供长期访问。
- Allows new metrics to be added as features evolve.
- 允许随着功能的演进添加新的指标。
Use of OpenTSDB
OpenTSDB 的使用
- Monitors all infrastructure and software, including the HBase cluster itself.
- 监控所有基础设施和软件,包括 HBase 集群本身。
📈 Advertisement Impressions and Clickstream
📈 广告展示和点击流
- Online Advertising: A major revenue source for online products, providing free services with targeted ads based on user profiles.
- 在线广告:在线产品的主要收入来源,通过基于用户画像的定向广告提供免费服务。
- Data Characteristics:
- 数据特征:
- Continuous flow.
- 持续流动。
- Easily divided by users.
- 易于按用户划分。
- Immediate Use: Data can be utilized immediately for online optimization of user-profile models.
- 即时使用:数据可以立即用于在线优化用户画像模型。
HBase for User Interaction Data
用于用户交互数据的 HBase
- Capture and Process: HBase effectively captures clickstream data and user interaction data.
- 捕获和处理:HBase 有效地捕获点击流数据和用户交互数据。
- Processing Methods: Utilizes techniques like MapReduce for data cleaning and enhancement.
- 处理方法:利用 MapReduce 等技术进行数据清洗和增强。
🌐 Information Exchange in Social Networks
🌐 社交网络中的信息交换
- Role of Social Websites: Facilitate interactions among users and allow them to view the history of their communications.
- 社交网站的角色:促进用户之间的互动,并允许他们查看其通信历史。
- Storage Advantage: Cheap storage innovations allow social networking companies to maintain extensive interaction histories.
- 存储优势:廉价的存储创新使社交网络公司能够维护广泛的互动历史。
HBase in Social Networking
HBase 在社交网络中的应用
- Facebook Messages: Entirely backed by HBase, storing all messages exchanged between users.
- Facebook 消息:完全由 HBase 支持,存储用户之间交换的所有消息。
- Requirements:
- 要求:
- High write throughput.
- 高写入吞吐量。
- Extremely large tables.
- 极大的表。
- Strong consistency within a datacenter.
- 数据中心内的强一致性。
HBase Usage Across Industries
HBase 在各行各业的应用
| Industry行业 | Use Case Description用例描述 |
|---|---|
| Medical | Storing genome sequences, disease history. |
| 医疗 | 存储基因组序列、疾病史。 |
| Sports | Storing match histories for analytics and predictions. |
| 体育 | 存储比赛历史用于分析和预测。 |
| Web | Storing user history and preferences for targeted marketing. |
| 网络 | 存储用户历史和偏好以进行定向营销。 |
| Oil and Petroleum | Storing exploration data for predictive analysis. |
| 石油 | 存储勘探数据以进行预测分析。 |
| E-commerce | Recording customer search history for targeted advertising. |
| 电子商务 | 记录客户搜索历史以进行定向广告。 |
RDBMS vs. HBase
RDBMS 与 HBase 对比
Definitions
定义
- Relational Database Management System (RDBMS):
- 关系型数据库管理系统 (RDBMS):
- Based on the relational model by E. F. Codd.
- 基于 E. F. Codd 的关系模型。
- Functions include creating, reading, updating, and deleting data.
- 功能包括创建、读取、更新和删除数据。
- HBase:
- HBase:
- Column-oriented database management system on top of ==Hadoop Distributed File System (HDFS)==.
- 运行在 ==Hadoop 分布式文件系统(HDFS)==之上的列式数据库管理系统。
- Suited for sparse data sets, open source, and written in Java.
- 适用于稀疏数据集,开源,用 Java 编写。
- Capable of storing massive amounts of data from terabytes to petabytes.
- 能够存储从太字节到拍字节的海量数据。
Key Differences
主要区别
| Feature特性 | RDBMS | HBase |
|---|---|---|
| Query Language | Requires SQL | No SQL |
| 查询语言 | 需要 SQL | 无 SQL |
| Schema | Fixed schema | No fixed schema |
| 模式 | 固定模式 | 无固定模式 |
| Orientation | Row-oriented | Column-oriented |
| 方向 | 行式 | 列式 |
| Scalability | Not scalable | Scalable |
| 可伸缩性 | 不可伸缩 | 可伸缩 |
| Nature | Static | Dynamic |
| 性质 | 静态 | 动态 |
| Data Retrieval | Slower retrieval | Faster retrieval |
| 数据检索 | 检索较慢 | 检索较快 |
| Data Types | Structured data only | Structured, unstructured, semi-structured |
| 数据类型 | 仅结构化数据 | 结构化、非结构化、半结构化 |
| Sparse Table Optimization | Not optimized for sparse tables | Good with sparse tables |
| 稀疏表优化 | 未对稀疏表进行优化 | 擅长处理稀疏表 |
HBase Table Structure
HBase 表结构
- Schema: Defines only column families; multiple column families can exist in a table.
- 模式:仅定义列族;一个表中可以存在多个列族。
- Cell Values: Each has a timestamp.
- 单元格值:每个值都有一个时间戳。
Storage Mechanism
存储机制
- Table: A collection of rows.
- 表:行的集合。
- Row: A collection of column families.
- 行:列族的集合。
- Column Family: A collection of columns.
- 列族:列的集合。
Summary of Key Concepts
关键概念总结
- HBase is a ==column-oriented NoSQL database== well-suited for large-scale data storage and retrieval.
- HBase 是一个==面向列的 NoSQL 数据库==,非常适合大规模数据存储和检索。
- It leverages ==HDFS== for data storage and is particularly effective for applications requiring high write and read throughput.
- 它利用 ==HDFS== 进行数据存储,对于需要高写入和读取吞吐量的应用尤其有效。Understanding the differences between RDBMS and HBase is crucial for selecting the right database technology for specific use cases.
- 理解 RDBMS 和 HBase 之间的差异对于为特定用例选择正确的数据库技术至关重要。
🗄️ Hadoop and HBase Overview
🗄️ Hadoop 和 HBase 概述
Hadoop Architecture
Hadoop 架构
- Hadoop is a framework that allows for the distributed processing of large data sets across clusters of computers.
- Hadoop 是一个允许在计算机集群上对大型数据集进行分布式处理的框架。
- It includes a ==distributed storage system==, known as the ==Hadoop Distributed File System (HDFS)==.
- 它包括一个==分布式存储系统==,称为 ==Hadoop 分布式文件系统 (HDFS)==。
HDFS Characteristics
HDFS 特性
- Master-Slave Architecture:
- 主从架构:
- HDFS operates on a master-slave architecture that stores data across the cluster.
- HDFS 在主从架构上运行,该架构将数据存储在整个集群中。
- The master node manages the metadata and the slave nodes store the actual data.
- 主节点管理元数据,从节点存储实际数据。
HBase: An Introduction
HBase:简介
- HBase is an open-source database from Apache that operates on the Hadoop cluster.
- HBase 是一个来自 Apache 的开源数据库,运行在 Hadoop 集群上。
- It falls under the category of ==non-relational database management systems (NoSQL)==.
- 它属于==非关系型数据库管理系统 (NoSQL)== 的范畴。
Comparison with RDBMS
与 RDBMS 的比较
- RDBMS (Relational Database Management Systems) are used for SQL databases and include systems like:
- RDBMS(关系型数据库管理系统)用于 SQL 数据库,包括以下系统:
- MS SQL Server
- IBM DB2
- Oracle
- MySQL
- Microsoft Access
HBase Characteristics
HBase 特性
- Column-Oriented Database: HBase is specifically a column-oriented database management system.
- 列式数据库:HBase 专门是一种列式数据库管理系统。
- Data Storage:
- 数据存储:
- Tables in HBase are sorted by row.
- HBase 中的表按行排序。
- The table schema only defines ==column families==, which consist of key-value pairs.
- 表模式仅定义==列族==,列族由键值对组成。Differences Between RDBMS and HBase
RDBMS 和 HBase 之间的差异
| Feature | RDBMS | HBase |
|---|---|---|
| 特性 | RDBMS | HBase |
| Structure | Table-based with rows and columns | Column-oriented with column families |
| 结构 | 基于表的行和列 | 面向列,带有列族 |
| Schema Definition | Fixed schema with defined tables | Flexible schema with dynamic columns |
| 模式定义 | 具有已定义表的固定模式 | 具有动态列的灵活模式 |
| Data Retrieval | SQL queries for structured data | Access via APIs for sparse data |
| 数据检索 | 用于结构化数据的 SQL 查询 | 通过 API 访问稀疏数据 |
| Use Cases | Transactional systems | Real-time analytics and big data |
| 用例 | 事务系统 | 实时分析和大数据 |
HBase Table Structure
HBase 表结构
- A table in HBase can have multiple ==column families==.
- HBase 中的一个表可以有多个==列族==。
- Each ==column family== can contain any number of columns, allowing for flexible data modeling.
- 每个==列族==可以包含任意数量的列,从而实现灵活的数据建模。