数学思路 数据表征 将$28 \times 28$像素的灰度图像展开为784维向量,$x ∈ ℝ^{784}$,像素值归一化至[0, 1]区间[^1]。标签采用one-hot编码,构建目标函数$y ∈ {0,1}^{10}$[^2]
前向传播 网络维度变化$784\Longrightarrow 512\Longrightarrow 256\Longrightarrow 128\Longrightarrow 64\Longrightarrow 10$
第一层 :$z_1=W_1x+b_1,a_1=ReLU(z_1)=max(0,z_1)$[^3]
第二层 :$z_2=W_2a_1+b_2,a_2=ReLU(z_2)$
第三层 :$z_3=W_3a_2+b_3,a_3=ReLU(z_3)$
第四层 :$z_4=W_4a_3+b_4,a_4=ReLU(z_4)$
输出层 :$z_5=W_5a_4+b_5,\hat{y} = \text{softmax}(z_5) = \frac{e^{z_5}}{\sum_{i=1}^{10} e^{z_5^{(i)}}}$
反向传播 $$ \frac{\partial L}{\partial W_1} = \underbrace{\frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z_5}}_{\delta_5} \cdot \frac{\partial z_5}{\partial a_4} \cdot \frac{\partial a_4}{\partial z_4} \cdot \frac{\partial z_4}{\partial a_3} \cdot \frac{\partial a_3}{\partial z_3} \cdot \frac{\partial z_3}{\partial a_2} \cdot \frac{\partial a_2}{\partial z_2} \cdot \frac{\partial z_2}{\partial a_1} \cdot \frac{\partial a_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial W_1} $$
参数优化 对全部参数${W_i, b_i}^{5}{i=1}$,使用带动量的SGD更新: $$ \begin{aligned} v {W_i} &:= \gamma v_{W_i} + \eta \frac{\partial L}{\partial W_i} \ W_i &:= W_i - v_{W_i} \end{aligned} $$
评估指标 $$ Accuracy = \frac{(Σ_{n=1}^N I(argmax(ŷ^{(n)}) = argmax(y^{(n)})))}{N} $$
代码思路 库导入与数据预处理 1 2 3 4 5 6 7 8 9 10 11 import torchfrom torchvision import transforms, datasetsfrom torch.utils.data import DataLoaderimport torch.nn.functional as Fimport torch.optim as optimbatch_size = 64 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307 ,), (0.3081 ,)) ])
ToTensor()将PIL图像转换为张量,Normalize进行归一化
batch_size=64 :每批处理64张图片
数据加载 1 2 3 4 train_dataset = datasets.MNIST(root='../dataset/mnist/' , train=True , download=True , transform=transform) train_loader = DataLoader(train_dataset, shuffle=True , batch_size=batch_size) test_dataset = datasets.MNIST(root='../dataset/mnist' , train=False , download=True , transform=transform) test_loader = DataLoader(test_dataset, shuffle=False , batch_size=batch_size)
shuffle=True表示训练数据打乱,以增强泛化性
神经网络模型 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 class Net (torch.nn.Module): def __init__ (self ): super (Net, self ).__init__() self .l1 = torch.nn.Linear(784 , 512 ) self .l2 = torch.nn.Linear(512 , 256 ) self .l3 = torch.nn.Linear(256 , 128 ) self .l4 = torch.nn.Linear(128 , 64 ) self .l5 = torch.nn.Linear(64 , 10 ) def forward (self, x ): x = x.view(-1 , 784 ) x = F.relu(self .l1(x)) x = F.relu(self .l2(x)) x = F.relu(self .l3(x)) x = F.relu(self .l4(x)) return self .l5(x)
结构 :5层全连接网络(784→512→256→128→64→10),逐步压缩特征。
x = x.view(-1, 784)表示将张量转换为一维向量。-1表示自动推导维度
损失函数与优化器 1 2 criterion = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01 , momentum=0.5 )
CrossEntroplLoss用于定义交叉熵损失函数,适用于多分类任务,其中每个样本的标签是单个类别
训练函数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 def train (epoch ): running_loss = 0.0 for batch_idx, data in enumerate (train_loader, 0 ): inputs, target = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, target) loss.backward() optimizer.step() running_loss += loss.item() if batch_idx % 300 == 299 : print (f'[{epoch+1 } , {batch_idx+1 } ] loss: {running_loss/300 :.3 f} ' ) running_loss = 0.0
清空梯度 :optimizer.zero_grad()
前向传播 :outputs = model(inputs)
计算损失 :loss = criterion(outputs, target)
反向传播 :loss.backward()
参数更新 :optimizer.step()
测试函数 1 2 3 4 5 6 7 8 9 10 11 12 13 14 def train (epoch ): running_loss = 0.0 for batch_idx, data in enumerate (train_loader, 0 ): inputs, target = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, target) loss.backward() optimizer.step() running_loss += loss.item() if batch_idx % 300 == 299 : print (f'[{epoch+1 } , {batch_idx+1 } ] loss: {running_loss/300 :.3 f} ' ) running_loss = 0.0
评估模式 :torch.no_grad()禁用梯度计算,节省内存
预测计算 :取输出最大值的索引作为预测类别,统计正确率
代码实现 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 import torchfrom torchvision import transformsfrom torchvision import datasetsfrom torch.utils.data import DataLoaderimport torch.nn.functional as Fimport torch.optim as optimbatch_size = 64 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307 ,), (0.3081 ,)) ]) train_dataset = datasets.MNIST(root='../dataset/mnist/' , train=True , download=True , transform=transform) train_loader = DataLoader(train_dataset, shuffle=True , batch_size=batch_size) test_dataset = datasets.MNIST(root='../dataset/mnist' , train=False , download=True ,transform=transform) test_loader = DataLoader(test_dataset, shuffle=False , batch_size=batch_size) class Net (torch.nn.Module): def __init__ (self ): super (Net, self ).__init__() self .l1 = torch.nn.Linear(784 , 512 ) self .l2 = torch.nn.Linear(512 , 256 ) self .l3 = torch.nn.Linear(256 , 128 ) self .l4 = torch.nn.Linear(128 , 64 ) self .l5 = torch.nn.Linear(64 , 10 ) def forward (self, x ): x = x.view(-1 , 784 ) x = F.relu(self .l1(x)) x = F.relu(self .l2(x)) x = F.relu(self .l3(x)) x = F.relu(self .l4(x)) return self .l5(x) model = Net() criterion = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01 , momentum=0.5 ) def train (epoch ): running_loss = 0.0 for batch_idx, data in enumerate (train_loader, 0 ): inputs, target = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, target) loss.backward() optimizer.step() running_loss += loss.item() if batch_idx % 300 == 299 : print ('[%d, %5d] loss: %.3f' % (epoch+1 , batch_idx + 1 , running_loss / 300 )) running_loss = 0.0 def test (): correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images) _, predicted = torch.max (outputs.data, dim=1 ) total += labels.size(0 ) correct += (predicted == labels).sum ().item() print ('accuracy on test set: %d %% ' % (100 * correct / total)) if __name__ == '__main__' : for epoch in range (10 ): train(epoch) test()
[^1]: MNIST图像是灰度图,每个像素值用8位无符号整数,取值范围[0, 255]。通过线性缩放将像素值映射到[0, 1]区间:$x_{归一化}=\frac{x_{原始}}{255}$ [^2]: One-Hot编码是一种将类别标签(如数字0-9)转换为二进制向量的方法。在MNIST中,假设某张图片的数字是3,One-Hot编码后:[0, 0, 0, 1, 0, 0, 0, 0, 0, 0]。y ∈ {0,1}¹⁰ 表示这是一个长度为10的向量,每个元素只能是0或1,且有且仅有一个1 。 [^3]: ReLU函数:$f(x)=max(0, x)$