思路

数据准备

1
2
3
xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1])
y_data = torch.from_numpy(xy[:, [-1]])

x_data表示读取所有行,从第一列读到倒数第二列

y_data表示读取所有行的最后一列

模型设计

1
2
3
4
5
6
7
8
9
10
11
12
13
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid()

def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
  • 三层全连接层:构建三层神经网络模型,维度变化:8 -> 6 -> 4 -> 1,逐层降低维度
  • 激活函数:每层后接Sigmoid,将输出压缩到[0, 1]范围
  • 前向传播:数据依次通过各层和Sigmoid,最终输出预测值

损失函数与优化器

1
2
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
  • BCELoss(二元交叉熵损失)^1

$$
BCELoss(y_{pred},y_{true})=-\frac{1}{N}\sum_{i=1}^{N}[y_{true}^{(i)}\cdot log(y_{pred}^{(i)})+(1-y_{true}^{(i)})\cdot log(1-y_{pred})^{(i)}]
$$

  • SGD(随机梯度下降)

$$
\theta_{t+1}=\theta_{t}-\eta \cdot\nabla_{\theta}\mathcal{L}(\theta_{t})
$$

训练循环

  1. 前向传播:输入数据得到预测值y_pred
  2. 计算损失:比较y_predy_data
  3. 反向传播:计算梯度loss.backward(),清零历史梯度optimizer.zero_grad()
  4. 参数更新:调整模型参数optimizer.step()
  5. 记录损失
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
for epoch in range(100):
# 前向传播
y_pred = model(x_data)
# 计算损失
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())

# 反向传播
optimizer.zero_grad()
loss.backward()

# 参数更新
optimizer.step()

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
import torch
import matplotlib.pyplot as plt

xy = np.loadtxt('diabetes.csv', delimiter=',', dtype=np.float32)
x_data = torch.from_numpy(xy[:, :-1])
y_data = torch.from_numpy(xy[:, [-1]])

class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid()

def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x

model = Model()

criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

epoch_list = []
loss_list = []

for epoch in range(100):
# 前向传播
y_pred = model(x_data)
# 计算损失
loss = criterion(y_pred, y_data)
print(epoch, loss.item())
epoch_list.append(epoch)
loss_list.append(loss.item())

# 反向传播
optimizer.zero_grad()
loss.backward()

# 参数更新
optimizer.step()

plt.plot(epoch_list, loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()